深度学习之目标检测常用算法原理+实践精讲|完结无密
深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络 课程从算法角度出发,对各个模型进行全面细致的讲解,并结合人脸检测、物体检测、行人车辆检测、文本检测等项目,熟悉算法工程师在工作中会接触到的数据打包、网络训练、测试等问题,一步步带大家了解和完成目标检测实战案例,尽快进入深度学习领域。 适合人群 目标检测在深度学习领域中应用非常广泛。无论是AI爱好者,在读研究生 还是在职算法工程师,学习这门课程都能够让你有所收获。 技术储备要求 了解linux环境的基本操作 具备一定机器学习、深度学习基础的学员 有Caffe、TensorFlow基础 [wm_tips]试看链接:https://pan.baidu.com/s/1Eol_gDSG3241rxwvY_5aNg 提取码:vkya [/wm_tips] 章节目录: 第1章 课程介绍 试看1 节 | 23分钟 本章节主要介绍课程的主要内容、核心知识点、课程涉及到的应用案例、深度学习算法设计通用流程、适应人群、学习本门课程的前置条件、学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络。 收起列表 视频:1-1 课程导学 (22:58)试看 第2章 目标检测算法基础介绍13 节 | 122分钟 本章节主要介绍目标检测算法的基本概念、传统的目标检测算法、目前深度学习目标检测主流方法(one-stage、two-stage、多任务网络)、相关算法的基本流程、算法性能的评价指标、不同算法的优缺点和性能比较等,并结合实际的应用场景和案例来介绍目标检测算法的重要性和实用性。… 收起列表 视频:2-1 目标检测问题定义 (12:10) 视频:2-2 目标检测问题方法 (15:11)...